Q1.The diagram below shows an electric two-wheeled vehicle and driver.

(a) The vehicle accelerates horizontally from rest to $27.8 \mathrm{~m} \mathrm{~s}^{-1}$ in a time of 4.6 s . The mass of the vehicle is 360 kg and the rider has a mass of 82 kg .
(i) Calculate the average acceleration during the 4.6 s time interval. Give your answer to an appropriate number of significant figures.
acceleration $=$ $\qquad$ $\mathrm{m} \mathrm{s}^{-2}$
(ii) Calculate the average horizontal resultant force on the vehicle while it is accelerating.
$\qquad$
(b) State and explain how the horizontal forward force on the vehicle has to change for constant acceleration to be maintained from 0 to $27.8 \mathrm{~m} \mathrm{~s}^{-1}$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) The electric motors drive both wheels of the vehicle.

Add labelled force arrows to the diagram to show the horizontal forces acting on the vehicle when it is moving at a constant speed.
(d) The vehicle now accelerates to a constant speed of $55 \mathrm{~m} \mathrm{~s}^{-1}$. The useful power output of the motors is 22 kW at this speed.

Calculate the horizontal resistive force acting on the vehicle.
horizontal resistive force = ................................................... N

Q2.A lead ball of mass 0.25 kg is swung round on the end of a string so that the ball moves in a horizontal circle of radius 1.5 m . The ball travels at a constant speed of $8.6 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) (i) Calculate the angle, in degrees, through which the string turns in 0.40 s .
angle $\qquad$ degree
(ii) Calculate the tension in the string. You may assume that the string is horizontal.
$\qquad$ N
(b) The string will break when the tension exceeds 60 N .

Calculate the number of revolutions that the ball makes in one second when the tension is 60 N .
number of revolutions $\qquad$
(c) Discuss the motion of the ball in terms of the forces that act on it. In your answer you should:

- explain how Newton's three laws of motion apply to its motion in a circle
- explain why, in practice, the string will not be horizontal.

You may wish to draw a diagram to clarify your answer.
The quality of your written communication will be assessed in your answer.

Q3.Spectacle lenses can be tested by dropping a small steel ball onto the lens, as shown in the figure below, and then checking the lens for damage.

(a) Calculate the density of the steel used for the ball.

$$
\text { density = ................................kg m }{ }^{-3}
$$

(b) In a test the ball bounced back to a height of 0.85 m .

Calculate the speed of the ball just before impact.

## Page 5

> speed =
$\qquad$ $\mathrm{m} \mathrm{s}^{-1}$
(c) Calculate the speed of the ball just after impact.

$$
\text { speed }=\mathrm{m} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \mathrm{m} \mathrm{~s}^{-1}
$$

(d) Calculate the change in momentum of the ball due to the impact.

$$
\text { momentum }=\mathrm{m} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}
$$

(e) The time of contact was 40 ms . Calculate the average force of the ball on the lens during the impact.

$$
\text { average force = ............................... } \mathrm{N}
$$

(f) Explain, with reference to momentum, why the test should also specify the material of the plinth the lens sits on.
$\qquad$
$\qquad$

Q4.A lift and its passengers with a total mass of 500 kg accelerates upwards at $2 \mathrm{~m} \mathrm{~s}^{-2}$ as shown. Assume that $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.


What is the tension in the cable?

A $\quad 1000 \mathrm{~N}$ $\square$
B $\quad 4000 \mathrm{~N}$ $\square$
C $\quad 5000 \mathrm{~N}$


D $6000 \mathrm{~N} \quad \circ$

Q5.Which of the following statements is correct?
The force acting on an object is equivalent to

A its change of momentum.


B the impulse it receives per


C the energy it gains per second.


D its acceleration per metre.

